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LIQUID CRYSTALS, 1989, VOL. 5 ,  No. 6, 1861-1873 

Mixtures of liquid-crystalline polymers 

by P. MAISSA and P. SIXOU 
U.A. 190, Physique de la MatiQe CondensCe, Parc Valrose, 06034 Nice Cedex, 

France 

A density-functional expansion method is used to derive the free energy of a 
polymer mixture. The expression obtained includes the entropy of mixing, the 
entropy of configuration of the chains and the interactions (both isotropic and 
anisotropic ones). The chains are modelled as interacting elastic lines (bend 
curvature). The method is very general, and we only focus our attention on binary 
mixtures. The phase diagram and the order parameters are calculated. We show 
some results for two types of mixtures: a nematic polymer in a non-mesomorphic 
particle (polymer or solvent) and in another nematic liquid crystal (small-molecule 
or polymer). We discuss the influence of the molecular weights, the persistence 
length and the interactions on the phase separation. 

1. Introduction 
A considerable amount of experimental and theoretical work has been done on 

liquid-crystalline polymers (LCP) in recent years [ 1-31. These substances are of 
interest from both fundamental and practical points of view. They constitute a new 
family of materials, which have a number of industrial applications (fibres, sensors, 
electro-optic components etc.) [4, 51. They are characterized by the existence of a 
phase transition from an isotropic to an orientationally ordered state through vari- 
ation of temperature (thermotropic polymers) or concentration (lyotropic polymers). 

As in the case of a small-molecule liquid crystal (SMLC), the anisotropic phases 
may be of different types-nematic, cholesteric and smectic. A variety of experimental 
methods have been used to observe and characterize these mesomorphic phases, 
which are optically birefringent: optical microscopy, viscosity measurements and 
differential scanning calorimetry have been employed in determining the transition 
temperature, the critical concentrations and the biphasic ranges [6-101 and also in the 
study of the textures [6, 1 13; nuclear magnetic resonance has been used [ 12-1 41 for the 
determination of the order; while the cholesteric pitch has been determined by light 
scattering and spectrophotometry [15, 161. 

Main-chain LCPs can be modelled in various ways: as rigid chains (rod-like or 
helical rod-like, as for polypeptides); rod-like mesogens alternating with flexible 
spacers (as for polyesters); semi-rigid chains (bend elastic lines or worm-like chains for 
cellulose derivatives, for example) [ 17, 181. 

The chain rigidity of the polymer structure, the chain length and the interactions 
between monomers-both isotropic (which are of great importance in flexible poly- 
mers) and anisotropic (which also exist in SMLC)-are the main parameters that can 
be adjusted to modify the properties (viscosity, biphasic areas, cholesteric pitch) of 
LCPs both in the melt and in mixtures). Moreover, from a theoretical point of view, 
simple variation of the degree of polymerization, from one monomer to hundred of 
units, allows study of the properties of a wide range of particles, from SMLCs to 
‘near-infinite’ long-chain polymers. We do not take into account here of the detailed 
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1862 P. Mai'ssa and P. Sixou 

chemical structure of real polymer chains, which is of great importance [19] but 
is not necessary in determining qualitative general trends and some quantitative 
predictions. 

LCPs exhibit biphasic areas that are generally much wider than those observed in 
SMLCs, although some LCP mixtures seem to be miscible [20]. 

Prediction of the occurrence of these biphasic areas is one of the main aims of 
theoretical work on LCPs. Previous studies have been based mainly on two approaches: 
the Onsager approach [21-241 and the lattice model of Flory [25,26]. They have been 
concerned primarily with rod-like polymers in the athermic case [27-341 and include 
work on multicomponent systems [28-321 and polydispersity [27]. They have also 
been used in the study of SMLC/flexible-polymer mixtures [35-371. Some studies have 
also taken account of the influence of the semiflexibility of the polymer through a 
model of rod-like particles connected by flexible joints [32, 381 or the influence of 
anisotropic interactions [34, 391. Different flexibility mechanisms have also been 
investigated for nematic polymer melts [22-241. A wide range of shapes of phase 
diagrams were investigated in a model [40] combining the Flory-Huggins approach 
(for the free energy of mixing and the isotropic interactions) and the Maier-Saupe 
mean-field theory for SMLCs (for the anisotropic interactions); however, this 
approach ignores the semirigidity of the polymer, and is better adapted for side chain 
polymers [40]. 

In another approach an elastic-line-type model for the semirigidity of the chain 
[18] has been used for the study of the lyotropic [41] and thermotropic behaviour 
[42,43] of an LCP and for the prediction of the so-called pseudo-transition in binary 
mixtures of an LCP and a SMLC [44]. It has also been used in the case of side-chain 
polymers [45]. 

More recently, a density-functional expansion has been used for the determination 
of the free energy of LCP mixtures [46], and an LCP in solution in a simple molecular 
solvent has been investigated [46,47]. This density-functional approach had been used 
previously for SMLC nematics [48] and for flexible isotropic polymers [49]. 

In this paper we shall be concerned with binary nematic polymer mixtures. In the 
first part we recall the general procedure for obtaining the free energy of mixing. We 
then develop the calculation of the phase diagram, the order parameters and the 
equation of stability (spinodal). We then give two examples: a nematic-polymer/non- 
mesomorphic-polymer mixture and a two-nematic-polymer mixture. We show the 
phase diagrams, the evolution of the order parameters, the influence of some 
parameters, and finally give some concluding remarks. 

2. Free energy of mixing 
2.1. General procedure [46, 491 

The partition function of a binary mixture of particles A and B, which can be 
simple molecules, SMLCs, flexible polymers or PLCs, is given by (Krepresents either 
the A or the B component) 

in which we have separated the kinetic contributions Z,. mK = NK/LK is the number of particles of the K component, N, being the number 
of monomers and L, the degree of polymerization (in the case of a small molecule 
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Mixtures of liquid-crystalline polymers 1863 

L, = 1). PK({rK(s))) is the configurational probability of an individual particle of the 
K species described by a curve r(s); it depends of the molecular model chosen and 
describes intramolecular interactions. V represents the intermolecular interactions; it 
will be expressed in a general form by (we only consider two-body interactions and 
assume additivity of the various contributions) 

where 

(2 small molecules), 

(polymer/small molecule), 

(2 polymers). 

By introducing the microscopic particle density eK ( r ,  w )  at position r with 
orientation w, with w(s)  = Jr(s)/Js, so that for a polymer 

ep(r, w)  = joLp ds 6[r - r j (s) ]6 [w - w j ( s ) ] ,  (3 4 
j = l  

and for a small molecule 
NS 

&(r ,  w )  = C 6(r - r,)S(w - w i ) ,  (3 b) 
i = l  

we get 

with 

W = - C  1 d r dr' d w  d w '  eK(r, w) WKK(r ,  r', w, w ' )eK( r 'w ' ) .  ( 5 )  
K , K  

Using the integral representation of the 6 function, (1) becomes 

where 

(7) 

LK 

[ j S r  6 w  PK ({r(s)})exp[ -so ds uK ( r ,  w )  for a polymer, 
QK = ~ 

d r  dwexp[-uK(r, w)] IJ for a small molecule. 
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1864 P. Maissa and P. Sixou 

The quantity QK represents the molecular model for component K in  the mean-field 
uk with configurational probability PK (r(s)) .  v]  is a normalization constant. 

We can write the partition function in terms of a free-energy functional: 

= v]  n 6 @ K  6uKexp[-pF(@K, u K > l ,  (8) 
J K  

so that, using Stirling’s formula, we obtain an expression for the free energy (neglect- 
ing kinetic contributions) 

/?F(@(eK, u K )  = 

dr  d w e K ( r ,  w ) u K ( r ,  w )  + W. (9) -;J 
We use the saddle-function method to minimize the functional (9 ( eK ,  u K )  with 

respect to eK and uK. We obtain coupled equations for the equilibrium densities and 
mean fields: 

, with dr  d w e ( r ,  w )  = N K ,  
NK ~ Q K  eK(r ,  w )  = - -- 

LKQK ~ U K  J 1 (10) 
6 W  

U K ( T ,  w )  = -. 
6 e K  

In pure component K the free energy is (we use label 0 for the pure components) 

N,” IVOK N,“ /?FK ( e i ,  u i )  = L, (In L, - 1) - -1nQi - dr  d w  &( r ,  w ) u i ( r ,  w )  
LK s 

+ - dr  dr’ d w  d w ’  &(r ,  w )  WKK ( r ,  r ’ ,  w, w’) &(r ’ ,  w’), 2 ‘s 
So that the free energy of mixing is 

2.2. Uniform-density case 
First we separate position and orientation dependence, with QK(r,  w )  = eK(r ) fK(w) ,  

fK(w) being the orientational distribution function for K .  The two-body interaction 
WKK‘ is expanded in spherical harmonics [50], so that 

wKK ( r ,  r’, w ,  w’) = W K K ( r ,  w ,  w ’ )  

= 1 WKK(r, 1, I , ,  ~ 2 ) ~ ( ~ ~ , ~ 2 m m , m 2 )  
/ I ,  .I2 

m,ml m z  

x K m  (ril r I) X l m l  ( w )  K : n 2 ( ~ ’ ) ,  (12) 

where C(ZZ,12mm,m,) are the Clehsch-Gordan coefficients and r = r - r’. 
We shall proceed with systems of uniform density, so that the density distribution 

will depend on orientation alone. We introduce the number densities nK = N K / V  (V  
is the total sample volume) and the volume fraction XK = nKvK, vK the unit volume 
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Mixtures of liquid-crystalline polymers 1865 

of K, so that QK(r, w) = n K f K ( w )  and, with the use of (7) and (12), the expression 
(1 0) become 

where 

WKK(O, I ,  I )  = dr r‘ WKK(r, 0,  I ,  I )  s 
s yK!m = f K ’ ( w >  K m  (w’> dw’ 

2.3. Polymer-chain model 
We choose the model of a semirigid polymer [I81 with bend elastic constant xK,  

which is represented by an elastic line rK(s); wK(s) = ar,(s)/ds is the tangent to the 
curve at the point s from the origin of the chain, w,. and wK- being respectively the 
initial (s = 0) and final (s = LK) orientations of the chain. The persistence length 
of the isolated chain is [I81 qK = CjxK and the configurational probability is 
(1 w K ( s ) I  = 1, 

The mean-field potential that corresponds to the intermolecular interactions will 
be taken to be of Maier-Saupe type (we limit the expansion in (14) to I = 0, 2 with 
m = 0 (symmetry of the nematic): 

uK(W) = p XK [ u y  - uyP2(w)sK”]. (16) 
K 

pup”’ = [(21 + 1)/(4n)]l WKK’(O, I ,  I) 1 represent the strength of the effective inter- 
actions, both isotropic repulsive ( I  = 0) and anisotropic attractive ( I  = 2). From 
(13), (16) and the use of the Green function, the order parameter and orientational 
distribution function are given by [47] 

s, = fK(W’)P2(W’) dw’ s 
fK(w) = 2 J ds J dw’  dw” GK(w’, W; 0, S)G(W, w”; s, LK) ,  (18) 

L K Q K  n 

Q K  = 5 dw’ dw” G K  (w’, w”; 0, LK), 
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1866 P. Maissa and P. Sixou 

GK(w', w"; 0, LK) is a solution of the Schrodinger-type equation [47, 511 

A, + uK(w) GK(w, w'; 0, S) = 6 ( ~ ) 6 ( ~  - w'). (19) 1 1 
as 2pxK 

Finally the free energy of mixing per site for a binary PLC mixture is given by 
(with vK = V) 

v A 9  
f M  = 

1 - X  
lnz, + X(l - X ) x o  ln(1 - X )  - - h z A  - - = --InX+- 1 - X  X X 

L A  LB L A  L, 

+ +X2uAAS; + + ( I  - x ) ~ u ' ~ s ~  + ~ ( 1  - x ) u ~ ~ s A s B  

+ terms linear in X ,  (20) 

where xo = B(u:' - fut" - +uOBB) = /?uo is the isotropic interaction parameter 
(Flory), uii = BUY are the anisotropic interaction parameters, Xis the volume fraction 
of polymer A ( X  = XA, 1 - X = X,) and 

Four types of terms are present: the entropy of mixing, the polymer configuration, 
the isotropic interaction and the anisotropic interactions. 

A and B can be polymers or small molecules (L, = l), leading to mesomorphic 
phases or not (zP = 0). A polymer can be flexible (4.K 4 l), semirigid or rod-like 

If we neglect isotropic interaction in the case q K  + co, we can recover the case of 
an SMLC mixture [53]; while if the anisotropic interactions are neglected, we recover 
the Flory-Huggins model of polymer solutions [54]. 

(4.K --f .'> [52i. 

3. Phase diagrams 
To calculate the phase diagrams, we need expressions for the chemical potential 

p = dfM/aX and the pressure ll = fM - X p  2401. The respective equalities of the 
chemical potentials and the pressures in the phases in equilibrium, together with the 
equations giving the equilibrium order parameter, afM/aSK = 0, in these phases 
solves the problem [40]; this requires numerical calculation (the derivation of the order 
parameter has been described in detail elsewhere [44, 471). We can have three types 
of biphase isotropic/isotropic (I/I), isotropic/nematic (I/N) and nematiclnematic 
(N/N). The equations are 
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Mixtures of liquid-crystalline polymers 1867 

4. Spinodal curves 
These are obtained by equating to zero the second derivative of the free energy 

with respect to the polymer volume fraction X ,  and give the region of instability of 
the phases. This leads to a fourth-order equation: 

- -  a 2 f M  - 3 
ax2 ax 

(ax4 + bX3 + cX2  + dX + e)  
1 

X(l - X ) A  
- - 

= 0, (22) 

with a, b, c, d, e and A functions of all the molecular parameters, the order parameter 
and the temperature. 

For the 1/1 biphase (S ,  = S, = 0) we recover the usual equation 

and the critical point is given by [55]  

X O  

X c =  [ 1 +  (;>'"I-'. - 

(23) 

For the I/N and N/N biphases we have the equation given above (22). If we ignore 
the isotropic interaction then zoLA = 0, and we have an equation of only third order 
(a = 0 in (22)). 

5. Typical phase diagrams 
In order to illustrate the above discussion, we shall consider two examples: two 

types of mixtures. 

5.1. A mesomorphic-polymer/non-mesomorphic-polymer mixture 
This includes solutions of an LCP in a solvent, which were the main subjects of 

previous work [46,47]. We have uBB = 0, and we choose a special case with uAB = 0, 
i.e. no orientationally induced order in the non-mesomorphic component (no orienta- 
tional correlation between A and B). The parameters are the ratio L,/L, of the lengths 
of the two components, xoLA (or XOL,) the isotropic interaction at a given tempera- 
ture (here we choose the transition temperature T, of the pure LCP A) and the ratio 
L A / q A  of the length to the persistence length of the LCP, which characterizes the 
relative rigidity of the polymer. 
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SA 

.4918-- _ _ _ _  _ _ _  - - 

.3430 ............................ !................ 
I I 
I I 

t I 

I 
I 

I 
I 

I : IX 

I 

j I pseudo-tjransitiG 

XI XN 1 

0 I 

Ibl 
.5 .5 

ICI 
1.02 

Figure 1. Mesomorphic-A/non-mesomorphic-B mixture; L A / q A  = 2.5, L A / &  = 2.5, xo. 
LA = 3. (a) Phase diagram. (b) Order parameter at TIT, = 0.85 as a function of volume 
fraction X. (c) Order parameter at X = 0.98 and 0.90 as a function of reduced tem- 
perature TIT,. 

Figure 1 (a) shows the phase diagram, as a plot of the reduced temperature T/T, 
versus the volume fraction X of the LCP A for L A / q A  = 2.5, L A / L ,  = 2.5 and 
xDLA(Tt) = 3 .  We do not need the value of the anisotropic interaction because the 
L A / q A  value fixes its value at the transition temperature Tt in the melt [47] and we use 
the reduced temperature. In this example the critical point obtained from (23), 
xoLA, = 3.331 1 and X, = 0.3874, corresponds to a reduced temperature TIT,, % 0.90. 
We can see an 1/1 biphasic area together with a large I/A biphasic region. The 
pseudo-transition [56] is also shown. We can see the evolution of the order parameter 
of the polymer A at a fixed reduced temperature (T/T, = 0.85) as a function of 
volume fraction X (figure 1 (h))  and at fixed volume fractions ( X  = 0.98 and 0.95) as 
a function of reduced temperature (figure 1 (c)). The order parameter is nearly one 
and a half times greater in the biphase as at the pseudo-transition. This may explain 
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Figure 2 .  Influence of the molecular parameters on the phase diagram of a mesomorphic- 
A/non-mesomorphic-B mixture: (a) fixed L A / q A  = 2.5 ,  LA/LB = 2.5 and xOLA = 3 (0), 

LA/LB = 10, xOLA = 0 and LA/qA = 10 (O), 2.5 (v). (b) Phase diagram of a meso- 
morphic-A/mesomorphic-B mixture; fixed L , / q A  = 32.7, LB/qB = 2.5,  L A / L B  = 13.08, 
u:" = u : ~  = u:B and x0LA = 10.5 (B), 10 (O) ,  9 (a), 0, (v). 

O (B); (C) fixed L A / q A  = 2.5,  XOLA = O and LA/& = 1 (O), 2.5 (B), 10 (V); ( d )  fixed 

certain discrepancies that have been found between experiment and theory. Figure 2 
shows the influence of the various parameters, xOLA (figure 2 (a)), LA/LB (figure 2 (c)) 
and LA/qA (figure 2 ( d ) ) .  The biphasic area increases with increasing isotropic inter- 
action, decreasing ratio of the length of the mesomorphic component to that of the 
flexible one, and decreasing of rigidity (increasing LA/qA). This is in agreement with 
experiment and our knowledge of polymers where large steric repulsions give rise to 
a wide region of phase separation, and a mixture of two polymers give rise to a larger 
biphasic area than a polymer/solvent one. Figure 3 shows the spinodal curves related 
to the phase diagram of figure l(a). We can see an unusual branch, which is related 
to the anisotropic part of the free energy (the 'limit' line corresponds to the limit of 
existence of this anisotropic part of the free energy). 

5.2.  A two LCP mixture 
The number of parameters is now increased; we need the same parameters as 

above together with LB/q,, u;"/utA and u p .  We only consider the case where 
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0 1 

Figure 3. Spinodal curves for the mixture of figure 1. 

(ufB)’ = ufAu:B (the orientational interaction between the two species is the geo- 
metric mean of the interaction of each component). 

Figure 4 shows the phase diagram (a) in reduced units (TIT,, as a function of the 
volume fraction X of A, T t A  being the transition temperature of the pure LCP A), and 
the variations of the order parameters of the two components A and B as functions 
of volume fraction X at two values of the reduced temperature: 0.90 (b) (in the I/N 
biphasic) and 0.85 (c) (in the N/N biphasic). The parameters are L A / q A  = 32.7, 
LB/qB = 2.5, L A / L B  = 13.08, x O L A ( T t A )  = 10.5 and uBB/uAA = 1. Then XOLA, = 
10.6566 and X ,  = 0.2166, which corresponds to TITtAc = 0.985. We see the existence 
of I/I, I/N and N/N biphases. In the N/N area we see coexistence of two nematic 
phases, with two different order parameters for each component. Figure 2(b) shows 
the influence of the isotropic interaction parameter, which causes all the biphasic 
areas to grow as it increases-which is to be expected. 

6. Conclusions 
The theory presented here takes into account the influence of semirigidity of 

polymer chains and interactions (isotropic and anisotropic). The persistence length, 
and so the semirigidity of the polymers, are parameters that can be estimated quite 
easily, for example through intrinsic viscosity measurements [57, 581 and the use of 
Yamakawa’s theory for worm-like chains [59]. For a thermotropic particle the aniso- 
tropic interaction parameter can be obtained from the experimental transition tem- 
perature of the pure melt [47]. We have shown examples of phase diagrams and order 
parameters associated with I/I, I/N and N/N biphasic regions. The present theory 
includes theories of flexible polymers and SMLC mixtures as limiting cases. 

Further publications will include systematic studies of mesomorphic/non-meso- 
morphic mixtures and mesomorphic/mesomorphic ones. Special attention will 
be given to the influence of the parameters on the shape of the phase diagram. The 
spinodal curves will also be refined. Applications to real polymer mixtures, including 
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Figure 4. Mesomorphic-A/mesomorphic-B mixture; L A / q A  = 32.7, LB/qB = 2.5, LA/LB = 
13.08, xo. LA = 10.5, u;"" = u2BB = 4": phase diagram (a); and order parameters at 
fixed reduced temperature TIT,, = 0.95 (b) and 0.85 (c)  versus volume fraction X of 
polymer A. 

comparisons with experimental data, will also be investigated. Multicomponent 
systems (e.g. ternary systems [60-631, which constitute a wide class of practical 
interest, since mixture of only two polymers is often impossible and needs the use of 
a third component, a solvent) will also be treated using this model. 
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